• 13
name

A PHP Error was encountered

Severity: Notice

Message: Undefined index: userid

Filename: views/question.php

Line Number: 191

Backtrace:

File: /home/prodcxja/public_html/questions/application/views/question.php
Line: 191
Function: _error_handler

File: /home/prodcxja/public_html/questions/application/controllers/Questions.php
Line: 433
Function: view

File: /home/prodcxja/public_html/questions/index.php
Line: 315
Function: require_once

According to the Gensim Word2Vec, I can use the word2vec model in gensim package to calculate the similarity between 2 words.

e.g.

trained_model.similarity('woman', 'man') 
0.73723527

However, the word2vec model fails to predict the sentence similarity. I find out the LSI model with sentence similarity in gensim, but, which doesn't seem that can be combined with word2vec model. The length of corpus of each sentence I have is not very long (shorter than 10 words). So, are there any simple ways to achieve the goal?

This is actually a pretty challenging problem that you are asking. Computing sentence similarity requires building a grammatical model of the sentence, understanding equivalent structures (e.g. "he walked to the store yesterday" and "yesterday, he walked to the store"), finding similarity not just in the pronouns and verbs but also in the proper nouns, finding statistical co-occurences / relationships in lots of real textual examples, etc.

The simplest thing you could try -- though I don't know how well this would perform and it would certainly not give you the optimal results -- would be to first remove all "stop" words (words like "the", "an", etc. that don't add much meaning to the sentence) and then run word2vec on the words in both sentences, sum up the vectors in the one sentence, sum up the vectors in the other sentence, and then find the difference between the sums. By summing them up instead of doing a word-wise difference, you'll at least not be subject to word order. That being said, this will fail in lots of ways and isn't a good solution by any means (though good solutions to this problem almost always involve some amount of NLP, machine learning, and other cleverness).

So, short answer is, no, there's no easy way to do this (at least not to do it well).

  • 86
Reply Report

Since you're using gensim, you should probably use it's doc2vec implementation. doc2vec is an extension of word2vec to the phrase-, sentence-, and document-level. It's a pretty simple extension, described here

http://cs.stanford.edu/~quocle/paragraph_vector.pdf

Gensim is nice because it's intuitive, fast, and flexible. What's great is that you can grab the pretrained word embeddings from the official word2vec page and the syn0 layer of gensim's Doc2Vec model is exposed so that you can seed the word embeddings with these high quality vectors!

GoogleNews-vectors-negative300.bin.gz (as linked in Google Code)

I think gensim is definitely the easiest (and so far for me, the best) tool for embedding a sentence in a vector space.

There exist other sentence-to-vector techniques than the one proposed in Le & Mikolov's paper above. Socher and Manning from Stanford are certainly two of the most famous researchers working in this area. Their work has been based on the principle of compositionally - semantics of the sentence come from:

1. semantics of the words

2. rules for how these words interact and combine into phrases

They've proposed a few such models (getting increasingly more complex) for how to use compositionality to build sentence-level representations.

2011 - unfolding recursive autoencoder (very comparatively simple. start here if interested)

2012 - matrix-vector neural network

2013 - neural tensor network

2015 - Tree LSTM

his papers are all available at socher.org. Some of these models are available, but I'd still recommend gensim's doc2vec. For one, the 2011 URAE isn't particularly powerful. In addition, it comes pretrained with weights suited for paraphrasing news-y data. The code he provides does not allow you to retrain the network. You also can't swap in different word vectors, so you're stuck with 2011's pre-word2vec embeddings from Turian. These vectors are certainly not on the level of word2vec's or GloVe's.

Haven't worked with the Tree LSTM yet, but it seems very promising!

tl;dr Yeah, use gensim's doc2vec. But other methods do exist!

  • 75
Reply Report

If you are using word2vec, you need to calculate the average vector for all words in every sentence/document and use cosine similarity between vectors:

import numpy as np
from scipy import spatial

index2word_set = set(model.wv.index2word)

def avg_feature_vector(sentence, model, num_features, index2word_set):
    words = sentence.split()
    feature_vec = np.zeros((num_features, ), dtype='float32')
    n_words = 0
    for word in words:
        if word in index2word_set:
            n_words += 1
            feature_vec = np.add(feature_vec, model[word])
    if (n_words > 0):
        feature_vec = np.divide(feature_vec, n_words)
    return feature_vec

Calculate similarity:

s1_afv = avg_feature_vector('this is a sentence', model=model, num_features=300, index2word_set=index2word_set)
s2_afv = avg_feature_vector('this is also sentence', model=model, num_features=300, index2word_set=index2word_set)
sim = 1 - spatial.distance.cosine(s1_afv, s2_afv)
print(sim)

> 0.915479828613
  • 42
Reply Report

you can use Word Mover's Distance algorithm. here is an easy description about WMD.

#load word2vec model, here GoogleNews is used
model = gensim.models.KeyedVectors.load_word2vec_format('../GoogleNews-vectors-negative300.bin', binary=True)
#two sample sentences 
s1 = 'the first sentence'
s2 = 'the second text'

#calculate distance between two sentences using WMD algorithm
distance = model.wmdistance(s1, s2)

print ('distance = %.3f' % distance)

P.s.: if you face an error about import pyemd library, you can install it using following command:

pip install pyemd
  • 25
Reply Report

Once you compute the sum of the two sets of word vectors, you should take the cosine between the vectors, not the diff. The cosine can be computed by taking the dot product of the two vectors normalized. Thus, the word count is not a factor.

  • 18
Reply Report

There is a function from the documentation taking a list of words and comparing their similarities.

s1 = 'This room is dirty'
s2 = 'dirty and disgusting room' #corrected variable name

distance = model.wv.n_similarity(s1.lower().split(), s2.lower().split())
  • 13
Reply Report

I would like to update the existing solution to help the people who are going to calculate the semantic similarity of sentences.

Step 1:

Load the suitable model using gensim and calculate the word vectors for words in the sentence and store them as a word list

Step 2 : Computing the sentence vector

The calculation of semantic similarity between sentences was difficult before but recently a paper named "A SIMPLE BUT TOUGH-TO-BEAT BASELINE FOR SENTENCE EMBEDDINGS" was proposed which suggests a simple approach by computing the weighted average of word vectors in the sentence and then remove the projections of the average vectors on their first principal component.Here the weight of a word w is a/(a + p(w)) with a being a parameter and p(w) the (estimated) word frequency called smooth inverse frequency.this method performing significantly better.

A simple code to calculate the sentence vector using SIF(smooth inverse frequency) the method proposed in the paper has been given here

Step 3: using sklearn cosine_similarity load two vectors for the sentences and compute the similarity.

This is the most simple and efficient method to compute the sentence similarity.

  • 12
Reply Report
    • very nice paper. note: the link to the SIF implementation requires writing the get_word_frequency() method which can be easily accomplished by using Python's Counter() and returning a dict with keys: unique words w, values: #w/#total doc len

I am using the following method and it works well. You first need to run a POSTagger and then filter your sentence to get rid of the stop words (determinants, conjunctions, ...). I recommend TextBlob APTagger. Then you build a word2vec by taking the mean of each word vector in the sentence. The n_similarity method in Gemsim word2vec does exactly that by allowing to pass two sets of words to compare.

  • 8
Reply Report

There are extensions of Word2Vec intended to solve the problem of comparing longer pieces of text like phrases or sentences. One of them is paragraph2vec or doc2vec.

"Distributed Representations of Sentences and Documents" http://cs.stanford.edu/~quocle/paragraph_vector.pdf

http://rare-technologies.com/doc2vec-tutorial/

  • 6
Reply Report
      • 2
    • It is worth mentioning shortly how the presented algorithm works. You basically add a unique "token" to every utterance and compute the word2vec vectors. At the end you will get the word vectors for each of your word in the corpus (provided you ask for all words, also the unique ones). Each unique "token" in the utterance will represent that utterance. There is some controversy about results presented in the paper but that is another story.

Gensim implements a model called Doc2Vec for paragraph embedding.

There are different tutorials presented as IPython notebooks:

Another method would rely on Word2Vec and Word Mover's Distance (WMD), as shown in this tutorial:

An alternative solution would be to rely on average vectors:

from gensim.models import KeyedVectors
from gensim.utils import simple_preprocess    

def tidy_sentence(sentence, vocabulary):
    return [word for word in simple_preprocess(sentence) if word in vocabulary]    

def compute_sentence_similarity(sentence_1, sentence_2, model_wv):
    vocabulary = set(model_wv.index2word)    
    tokens_1 = tidy_sentence(sentence_1, vocabulary)    
    tokens_2 = tidy_sentence(sentence_2, vocabulary)    
    return model_wv.n_similarity(tokens_1, tokens_2)

wv = KeyedVectors.load('model.wv', mmap='r')
sim = compute_sentence_similarity('this is a sentence', 'this is also a sentence', wv)
print(sim)

Finally, if you can run Tensorflow, you may try: https://tfhub.dev/google/universal-sentence-encoder/2

  • 5
Reply Report

I have tried the methods provided by the previous answers. It works, but the main drawback of it is that the longer the sentences the larger similarity will be(to calculate the similarity I use the cosine score of the two mean embeddings of any two sentences) since the more the words the more positive semantic effects will be added to the sentence.

I thought I should change my mind and use the sentence embedding instead as studied in this paper and this.

  • 4
Reply Report

Facebook Research group released a new solution called InferSent Results and code are published on Github, check their repo. It is pretty awesome. I am planning to use it. https://github.com/facebookresearch/InferSent

their paper https://arxiv.org/abs/1705.02364 Abstract: Many modern NLP systems rely on word embeddings, previously trained in an unsupervised manner on large corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as sentences, have however not been so successful. Several attempts at learning unsupervised representations of sentences have not reached satisfactory enough performance to be widely adopted. In this paper, we show how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks. Much like how computer vision uses ImageNet to obtain features, which can then be transferred to other tasks, our work tends to indicate the suitability of natural language inference for transfer learning to other NLP tasks. Our encoder is publicly available.

  • 3
Reply Report

If not using Word2Vec we have other model to find it using BERT for embed. Below are reference link https://github.com/UKPLab/sentence-transformers

pip install -U sentence-transformers

from sentence_transformers import SentenceTransformer
import scipy.spatial

embedder = SentenceTransformer('bert-base-nli-mean-tokens')

# Corpus with example sentences
corpus = ['A man is eating a food.',
          'A man is eating a piece of bread.',
          'The girl is carrying a baby.',
          'A man is riding a horse.',
          'A woman is playing violin.',
          'Two men pushed carts through the woods.',
          'A man is riding a white horse on an enclosed ground.',
          'A monkey is playing drums.',
          'A cheetah is running behind its prey.'
          ]
corpus_embeddings = embedder.encode(corpus)

# Query sentences:
queries = ['A man is eating pasta.', 'Someone in a gorilla costume is playing a set of drums.', 'A cheetah chases prey on across a field.']
query_embeddings = embedder.encode(queries)

# Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity
closest_n = 5
for query, query_embedding in zip(queries, query_embeddings):
    distances = scipy.spatial.distance.cdist([query_embedding], corpus_embeddings, "cosine")[0]

    results = zip(range(len(distances)), distances)
    results = sorted(results, key=lambda x: x[1])

    print("\n\n======================\n\n")
    print("Query:", query)
    print("\nTop 5 most similar sentences in corpus:")

    for idx, distance in results[0:closest_n]:
        print(corpus[idx].strip(), "(Score: %.4f)" % (1-distance))

Other Link to follow https://github.com/hanxiao/bert-as-service

  • 3
Reply Report

Trending Tags